Ali Perçin1, Aliekber Yapar2, Mehmet Ali Tokgöz3, Semih Yaş3, Alim Can Baymurat3, Hakan Yusuf Selek3

1Department of Orthopedics and Traumatology, Cizre State Hospital, Şırnak, Türkiye
2Department of Orthopedics and Traumatology, Antalya Training and Research Hospital, Antalya, Türkiye
3Department of Orthopedics and Traumatology, Gazi University Faculty of Medicine, Ankara, Türkiye

Keywords: Bone cements, boron, mechanical strength.

Abstract

Objectives: The aim of this study was to investigate the effects of adding hexagonal boron nitride at four different concentrations to polymethylmethacrylate (PMMA) bone cement, which is commonly used in orthopedic surgeries, on the mechanical properties and microarchitecture of the bone cement.

Materials and methods: The study included an unaltered control group and groups containing four different concentrations (40 g of bone cement with 0.5 g, 1 g, 1.5 g, 2 g) of hexagonal boron nitride. The samples used for mechanical tests were prepared at 20±2ºC in operating room conditions, using molds in accordance with the test standards. As a result of the tests, the pressure values at which the samples deformed were determined from the load-deformation graphs, and the megapascal (MPa) values at which the samples exhibited strength were calculated.

Results: The samples with 0.5 g boron added to the bone cement had significantly increased mechanical strength, particularly in the compression test. In the group where 2 g boron was added, it was noted that, compared to the other groups, the strength pressure decreased and the porosity increased. The porosity did not change particularly in the group where 0.5 g boron was added.

Conclusion: Our study results demonstrate that adding hexagonal boron nitride (HBN) to bone cement at a low concentration (0.5 g / 40 g PPMA) significantly increases the mechanical strength in terms of MPa (compression forces) without adversely affecting porosity. However, the incorporation of HBN at higher concentrations increases porosity, thereby compromising the biomechanical properties of the bone cement, as evidenced by the negative impact on compression and four-point bending tests. Boron-based products have gained increased utilization in the medical field, and HBN is emerging as a promising chemical compound, steadily growing in significance.

Citation: Perçin A, Yapar A, Tokgöz MA, Yaş S, Baymurat AC, Selek HY. Effects of hexagonal boron nitride on mechanical properties of bone cement (Polymethylmethacrylate). Jt Dis Relat Surg 2024;35(2):340-346. doi: 10.52312/jdrs.2024.1513.

Ethics Committee Approval

N/A. The study was conducted in accordance with the principles of the Declaration of Helsinki.

Author Contributions

Design: A.P., A.Y., M.A.T., S.Y., A.C.B., H.Y.S.; Analysis and interpretation of data: A.Y., M.A.T., S.Y., A.C.B.; Literature review: A.P., A.Y., H.Y.S.; Writing the article: A.P., A.Y.; Critical review: A.P., A.C.B., H.Y.S.

Conflict of Interest

The authors declared no conflicts of interest with respect to the authorship and/or publication of this article.

Financial Disclosure

The authors received no financial support for the research and/or authorship of this article.

Data Sharing Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.